흑연 음극 소재 대체할 ‘산호 모양 실리콘 소재’ 개발

흑연 음극 소재 대체할 ‘산호 모양 실리콘 소재’ 개발

  • 뿌리산업
  • 승인 2019.03.14 09:04
  • 댓글 0
기자명 엄재성 기자 jseom@snmnews.com
이 기사를 공유합니다

입자간 상호연결로 ‘일체형 실리콘 전극’ 구현…ACS Nano 논문 게재

전기차 배터리를 빠르게 충전하고 더 많은 에너지를 저장할 가능성이 열렸다. 흑연 음극 소재를 대체할 ‘산호 모양 실리콘 소재’가 개발된 덕분이다. 충전 시 크게 부풀고, 심지어 부서지던 실리콘의 단점이 해결한 데다 에너지 저장 공간도 늘어났다.

UNIST(총장 정무영) 로드니 루오프(Rodney S. Ruoff) 특훈교수(IBS 다차원 탄소재료 연구단장) 연구진과 POSTECH(총장 김도연) 박수진 교수팀은 고속충전이 가능한 리튬 이온 배터리용 실리콘 소재를 개발했다. 배터리 음극용으로 개발된 이 소재는 충전과 방전하는 동안 안정적인 구조를 유지했고, 상용화 조건에서 5배 빨리 충전되고 용량도 2배 이상 늘었다.

산호 모양 실리콘-카본 복합체 일체형 전극의 구조. (사진=UNIST
산호 모양 실리콘-카본 복합체 일체형 전극의 구조. (사진=UNIST

고성능 전기차 배터리는 지금보다 에너지 용량을 늘리고, 충전시간을 단축해야 한다. 하지만 현재 사용되는 음극 소재인 ‘흑연’은 이론적인 용량 한계가 있다. 또 고속충전 조건에서 음극 표면에 리튬 금속이 석출돼 배터리 전체의 성능과 안정성을 낮춘다.

흑연을 대신할 음극 소재로는 흑연보다 10배 이상 용량이 큰 ‘실리콘’이 주목받는다. 이론적 용량이 커서 고에너지 배터리에 적용하려는 시도도 많다. 그러나 실리콘은 충·방전 시 부피 변화가 커서 잘 깨지고, 깨진 표면을 따라 고체전해질 계면층이 두껍게 형성돼 리튬 이온의 전달 특성을 저하시킨다. 이 때문에 실리콘을 이용한 고에너지·고속충전 리튬 이온 배터리를 개발하는 일은 현재까지 어려운 일로 남아 있다.

이런 문제를 해결하기 위해, 공동 연구진은 물질 단계부터 새로운 설계를 제안했다. 우선 구멍(공극)이 많은 실리콘 나노와이어(Nanowire)들을 재료로 써서 실리콘의 부피 팽창 문제를 완화했다. 내부 공극들은 충전 시 팽창한 실리콘을 받아들여 실리콘이 깨지지 않고 견디도록 돕는다. 다음으로 다공성 실리콘 나노와이어를 높은 밀도로 연결시키고, 여기에 탄소를 나노미터(㎚) 두께로 얇게 씌웠다. 그 결과 만들어진 ‘산호 모양 실리콘-탄소 복합체 일체형 전극’은 전기 전도도가 향상돼 고속충전이 가능했다.

공동 제1저자인 빈 왕(Bin Wang) IBS 다차원 탄소재료 연구단 연구위원은 “실리콘 내부의 공극과 산호 모양의 다공성 구조는 리튬 이온을 빠르게 전달하게 돕고, 탄소층은 전극의 저항을 줄이는 동시에 계면 안정성까지 확보한다”고 설명했다.

산호 모양 실리콘-카본 복합체 일체형 전극의 전지 특성. (사진=UNIST)
산호 모양 실리콘-카본 복합체 일체형 전극의 전지 특성. (사진=UNIST)

특히 이 기술은 ‘일체형 전극’이라는 점에서 배터리 에너지 밀도를 높이는 데도 기여한다. 기존 전극은 리튬 이온이 포함된 활물질과 여기에 전자를 전해주는 집전체, 둘을 이어주는 도전제와 바인더 등이 필요했다. 그만큼 공간을 더 차지하므로 에너지 밀도도 떨어뜨리는데, 이 문제를 개선한 것이다.

공동 제1저자인 류재건 POSTECH 박사는 “일체형이 되면서 에너지 저장 공간이 늘어났고 산호 모양의 3차원 구조로 전도성도 향상됐다”며 “상용화된 리튬 이온 배터리 평가 조건에서 검증한 결과, 10분만 충전해도 흑연의 4배 이상 용량을 유지했다”고 말했다.

박수진 교수는 “산호 모양 실리콘-탄소 일체형 전극은 똑같은 부피에서 에너지 밀도와 출력 밀도를 모두 높이는 ‘두 마리 토끼를 잡는 기술’”이라며 “고속충전의 필수요소를 모두 충촉한 최초의 실리콘 기반 음극 소재”라고 강조했다. 루오프 교수는 “이 기술은 훗날 고속충전이 가능한 고용량 양극 소재와 함께 쓰여 더 높은 수준의 리튬 이온 배터리를 실현할 것이며 전기차 배터리 산업에 크게 기여할 것”이라고 전망했다.

이번 연구에는 디디에르 프라이밧(Didier Pribat) 성균관대 교수와 린지에 지&시앙롱 리(Linjie Whi&Xianglong Li) 중국 NCNST 교수팀이 함께 참여했으며, 연구결과는 세계적인 학술지 에이씨에스 나노(ACS Nano) 최신호(2월 26일자)에 실려 출판됐다. 연구 수행은 기초과학연구원(IBS)과 한국연구재단, 중국자연과학재단의 지원으로 이뤄졌다.

저작권자 © 철강금속신문 무단전재 및 재배포 금지
댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.